HyperColl-Recon: A Hypernetwork-based Adaptive Coll
Configuration Task Switching Network for MRI Reconstruction
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Fig 1: (a) Dynamically varying inter-scanner coil configurations with varying number of coils and their sensitivity maps. (b) Hypernetwork-based coil-configuration task switching model for
adaptive MRI reconstruction. (c) Colil Configuration Task-specific models (CCTSM) need training for every coil configuration, while the Task Invariant Model (CCTIM) or joint training has
single shared weight set, HyperCoil-Recon infers task-adaptive weights for the reconstruction network, enabling generalization to several unseen contexts without retraining.

Methods: we propose, HyperCoil-Recon, a hypernetwork-based coil

configuration task-switching reconstruction network. that encodes varying
configurations of the numbers of colls in a multi-tasking perspective, posing each
configuration as a task. The hypernetworks infer and embed task-specific
weights into the reconstruction network, 1) effectively utilizing the contextual
knowledge of common and varying image features among the various fields-of-
view of the coils, and 2) enabling generality to unseen configurations at test time.

Motivation and Clinical Relevance: Pparallel imaging, a fast MRI technique,

Involves dynamic coll configurations I.e. varying sensitivities and number of the coils. 1) Current deep
learning (DL)-based image reconstruction models have to be trained for each configuration, posing a
barrier to clinical translation, given the lack of computational resources and machine learning expertise
for clinicians to train models at deployment, and 2) joint training on diverse configurations learns a
single weight set that might underfit to deviated configurations. The purpose of this work Is to develop a
single DL model for adaptive colil-configuration-based multi-coil MRI reconstruction.
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Fig 2: (Left) Deep Cascaded HyperCoil-Recon Architecture with the hypernetworks and the reconstruction network blocks, data consistency, and weighted-average blocks. The
hypernetwork has three fully connected layers and two Leaky ReLU non-linear layers. (Right) Matrix plot showing the inter-task relationship. Tasks with neighboring coil configurations
exhibit more similarity, while far-apart configurations exhibit lesser similarity.

Table - 01: (Left) Quantitative comparison of HyperCoil-Recon with other multi-coil MRI reconstruction methods on large-scale clinical data. The column pairs are the evaluation results
of the 7-9-11 model (trained on 7, 9 &11 coils) on the 12-coil unseen task (same dataset), the 7-9-11 model on the 32-coil unseen task (unseen dataset), and the 15-28-31 model (trained
on 15, 28 & 31 coils) on the 32-coll task (reference for column 2) (Right) SSIM Plots showing generality to unseen coil contexts 8, 9, 11, 13 —15 coils combining 7, 10, &12 coills.
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Fig 3: (Left) Qualitative comparison of the HyperColl-Recon with other multi-coil MRI reconstruction architectures for the unseen 12-coil task using the 7-9-11 model of the same dataset.
(Right): Quantitative (top) and qualitative (bottom) results of the HyperColl-Recon with other adaptive MRI reconstruction methods - MAC-ReconNet and AdalN under multi-modal scenario
when combining (during training) different anatomies (12-coil T1 brain and 15-coil PD knee), with different contrast and different coll configurations (7, 10 and 12 coils respectively))
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ResultsS: The results reveal that our

approach 1) adapts on the fly to various
unseen configurations up to 32 coils when
trained on lower numbers (l.e. 7 to 11) of
randomly varying colls, and to 120 deviated
unseen configurations when trained on 18
configurations Iin a single model, 2) matches
the performance of coil configuration-specific
models, and 3) outperforms configuration-
Invariant models with improvement margins

Experiments: Our experiments include, 1)

Generalization to unseen coll configurations when trained on
few configurations, 2) Task relationship, 3) Performance
Comparison with other multi-coil MRI reconstruction
architectures on large-scale clinical datasets, 4) Comparison
with other adaptive MRI reconstruction methods for multi-
modal acquisition contexts, and 5) An ablative study.
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Conclusion: we introduce a simple and unified coil-
configuration task-switching CNN in a multi-tasking

of ~1dB/0.03and 0.3 dB/ 0.02 in PSNR /
SSIM for knee and brain data.

perspective to infuse the knowledge of dynamic coll
configurations in multi-coil MRI reconstruction.
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